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Abstract

Matrix power function and criculant matrices are truly fascinating with the great

hope of advancing performance and security for high end applications. They pro-

vide a high level of safety measure. The thesis presents a modification of the scheme

of Almulla et al., based on matrices over finite field Fp. The thesis mainly concen-

tration on the modification for enhancment of efficiency in their scheme by using

the of matrix power function and circulant matrices over tropical algebra, with

tropical operations of multiplication ⊗ and addition ⊕. These operations work

faster then the usual multiplication and addition. Another advantage of tropical

cryptography is that tropical linear systems of equations are more difficult to solve

than classical cases. In order to improve the security of the scheme, the matrix

decompositon problem together with discrete log problem is used. The working

principal is based on the randomly chosen ciculant matrices by the communicating

parties to secure key exchange for encryption and decryption.
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Chapter 1

Introduction

In this chapter, a brief description of cryptography by explaining its types and

history of cryptography is given, The tropical cryptography and its significance in

modern cryptography is also presented.

1.1 Cryptography

Cryptography [1] is the art of developing a secure communication between two

parties known as (sender and receiver) in the presence of third party known as

adversary. In cryptography, various techniques and procedures for establishing a

secure communication channel are developed.

Cryptography is not a new field of study, it has been in use since 2000 BC. The

ancient Egyptians [2] were the first to use it. In Egyptian civilization it was used

and applied in many ways and methods after that about 100 BC Julius Caesar

made a significant contribution to the history of classical cryptography by intro-

ducing one of the classical cipher known as the Caesar cipher [3]. For instance,

mono alphabetical cipher, play-fair cipher, four square cipher, hill cyphers of var-

ious sorts and so on [4]. Cryptography was used in warfare during World Wars I

and II by both the Germans and the Japanese. Enigma, a German machine, and

the Purple, a Japanese machine, were two of the most renowned devices employed

1



Introduction 2

throughout the war [5]. Due to the effective use of cryptography by Germans on

the battlefield during Second World War, American soldiers were rendered pow-

erless and disappointed.

Cryptography [6] provides a fundamental structure called a cryptosystem for this

purpose. Plaintext, encryption algorithm, decryption algorithm, ciphertext, and

key are the five main components of this system. Cryptography’s goal is not only

encryption and decryption, it is used also to keep information and data safe. Data

privacy, authenticity, availability, and integrity are all provided via cryptography.

Cryptography not only provides encryption and decryption of confidential infor-

maton sensitive data, but also electronic identification, and data integrity. For

example, ATMs, Internet banking, and mobile banking.

Symmetric key cryptography [7] and asymmetric key cryptography [8] are the two

primary classifications of cryptography based on key administration. Only one

key is given to both parties to scramble or unscramble the data in symmetric key

cryptography, however the primary difficulty with this approach is key distribution

when there are a high number of participants in one protocol. If this key is made

public, communications are jeopardized. Symmetric cryptography is still used for

data encryption and data integrity through outthe world, but the problem with

symmetric key cryptography is that when the key is distributed or disseminated

to the participants, an unauthorized person can obtain the key, make the entire

cryptosystem inefficient. Systems such as DES [9] and AES [10] are examples of

symmetric key cryptography.

To resolve the problem of key distribution in symmetric key cryptography. In

1976, Whitfield Diffie and Martin Hellman [11] initiated a new type of encryption

known as asymmetric key cryptography. Asymmetric cryptography employs two

separate keys, one for encryption and the other for decryption. One of these,

known as the private key and is used for decryption therefore kept secret. The

other one which is used for ecryption is known as the public key and it is al-

ways publically accessible to all the counting parties. Asymmetric cryptography

examples include the RSA cryptosystem [12], Elgamal cryptosystem [13] and El-

liptic curve cryptosystem (ECC) [14]. As asymmetric cryptography has numerous
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advantages on symmetric cryptography, it also has a disadvantage as encryption

and decryption are relatively slow when compared to symmetric key cryptography.

The most frequent hard problems are the discrete logarithms problem (DLP) [15]

and the integer factorization problem (IFP). All of these problems are founded on

the principles of number theory, classical algebra, and computational algebra.

1.2 Literature Review

In 2006, Ranjan introduce a key exchange protocol which use several chaotic maps

in collaboration with a set of linear functions for exchanging secret keys over an

unsafe but authenticated channel, [16] it is based on the idea that linear function

compositions are commutative. Furthermore, the idea of applying matrix power

function in cryptography was initiated by Sakalauskas in [17]. Firstly, the matrix

power function was used [17] for a symmetric cipher. As a continuation of the pre-

vious papers in this area, a compelling new enhanced matrix power function was

proposed in [18]. More implementations for asymmetric primitives constructions

can be found in [19].

Almulla et al.[20] recently introduced a key exchange protocol where the platform

group of m commuting square singular matrices of order n× n over a finite field .

Almullas scheme employs a similar scheme, in terms of the compositions of func-

tions as given in [16]. The use of square singular matrices instead of functions

makes the technique secureagainst cryptanalytic attacks such as discussed in [21].

The objective of this paper is to show on the successful cryptanalysis of the Almul-

las technique. The proposed cryptographic technique for symmetric key exchange

consists of a set of m commutative square singular matrices of dimension n × n.

The proposed scheme offers a concurrent technique for users of symmetric key

cipher systems to safely exchange their secret keys over public channels. This pro-

vide a scheme for generating pseudo random numbers from a single chaotic map,

which can be used in a various applications, including the proposed key exchange

protocol. The scheme was successfully cryptanlyzed by Jia et al. [22]. After the

crypotoanalyis, the auther concluded that a conter measure of this attack might be
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possible by changes the underlyining structure to defeat the solution of algebraic

equation. In view of his comments, in this research, the idea of using tropical

algebra for the modification of the scheme [22] is expressed.

Tropical cryptography applies tropical algebra in cryptography algorithms and

schemes. Tropical cryptography replaces usual operations with tropical opera-

tions. Imre Simon [23], a Brazilian mathematician, initially introduced tropical

algebra in the 1970s. He is regarded as one of the pioneers of tropical mathematics

and has published numerous books on the subject. Imre Simon’s work in this field

was acknowledged by French mathematician Jean-Eric Pin [24], also who coined

the term tropical in his honour.

A tropical algebra is also known as min-plus algebra Zmin = (Z ∪ {∞},⊕,⊗)

and tropical semiring containing two operations, tropical addition ⊗ and tropical

multiplication ⊗. In tropical algebra tropical multiplication ⊗ is actually a usual

addition and tropical addition ⊕ is a minimum operation so there is no usual

multiplication, Therefore tropical addition and multiplication are very fast. The

computational cost of a cryptographic protocol is reduced by tropical algebra in

comparison to other standard plateform. From these properties of tropical algebra

it becomes an interesting field of study for mathematicians.

They also promoted the previous wrok in this field Grigoriev and Shpilrain [25]

developed and used tropical matrix algebra for the Stickel key exchange protocol

[26], extending their work on homomorphisms. David Speyer and Bernd Sturmfels

[27] have currently introduced some useful features and results of tropical math-

ematics that are also valuable in tropical algebra. Because the solution of these

tropical schemes is based on a system of min-plus linear equations, the complexity

classes of NP ∩ co−NP are used to solve them.

1.3 Current Research

In this thesies, “A concurrent key exchange protocol based on commuting

matrices” by Amulla et al [20] is reviewd. The scheme uses public keys of
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matrices Ui where (i = 1 2, . . . ,m) of the scheme [20] with the following properties.

• Ui are singular matrix.

• Ui are not diagonalizable

• There should not exist a small integer k Such that Uk
i = Ui and there is no

integer η such that Uη
i = 0.

In this work, the key exchange protocol almulla2013concurrent, due to it crypo-

analysis, is modified in the setting of tropical algebras. For this, matrix power

function is defined by using tropical addition ⊕ and multiplican ⊗ in Chapter 2.

The modified scheme uses circulant matrices over a tropical algebra. The scurity

of the modified scheme is enhanced by using double hard problems, namely, con-

jugacy search problem CSP [28] and symmetrical decomposition problem SDP.

The following advantages of the modified scheme are observed.

• The scheme has become more secure as the attacker would have to solve

symmetrical decomposition problem as well as congugacy search problem,

to get access to secret key, which is computationally infeasible.

• The use of circulant matrices and MPF over a tropical algebra in the modified

scheme, fails the attack mounted on the scheme of Almulla [20] as presented

in [26].

• The modified scheme based on tropical algebras shows significatly a better

perfromance for both security and efficiency of the scheme. It resists the

algebraic attacks and also reduces computational cost.

• The modified scheme is illustrated by an examples in Chapter 4.

1.4 Thesis Layout

The organization of rest of the thesis is as follows:
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1. In Chapter 2, the fundamental ideas and definition of cryptography is

prestened. Then mathematical background and tropical algebra are de-

scribed also explain the properties of matrices. In this chapter brief overview

of cryptography, cryptanalysis, basic ideas of matrix power function, public

key authority, and Diffie-Hellman key exchange protocol are explained and

the concept of circulant matrices is presented.

2. In Chapter 3, the review of “A concurrent key exchange protocol based on

commuting matrices” by Almulla et.al [20] is presented . Furthermore, the

concepts on concurrent key exchange protocol based on commuting matrices

scheme is explained with the help of an example.

3. In Chapter 4, the modified form of the key exchange protocol of [20] us-

ing matrix power function and circulant matrices in tropical algebra is pre-

sented. In the modified scheme, use MPF for the circulant matrices over

tropical algebra with conjugacy search problem, and symmetrical decom-

position problem. To improve the security of the algorithm, the modified

scheme is illustrated with examples and the last section is devoted to the

security analysis.

4. In Chapter 5 discussed about the security analysis of the modified scheme

is discused and also the conclusion of present wrok is presented .



Chapter 2

Preliminaries

The introduction of cryptography, mathematical background, some hard problems

in cryptography and basic definitions with examples are discused in this chapter.

2.1 Cryptology

The word cryptology is originated from two Greek words kryptos (Hidden) and

logos (words). Hence cryptology is a science for the safe and secure communication

of data. It consists of two fields of study named are:

1. Cryptography

2. Cryptanalysis

as shown in the Figure 2.1 .

2.1.1 Cryptography

Cryptography is the branch of cryptology that transforms the original message

(audio, video or text) securely and for any unauthorized person it would be very

7
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FIGURE 2.1: Cryptology

difficult for discover it’s original meaning.

The sender transforms the original message or plaintext M into scrambled message

or ciphertext C. The process of transforming M into C is known as encryption and

process of transforming C back into M is known as in cryptography usually the two

characters, Ayesha and Bilal are used. Ayesha (sender) wants to communicate with

Bilal (receiver) over the public network. The original message sent by Ayesha to

Bilal is known as plaintext. Plaintext is not sent to Bilal in its original form but it

is changed into a coded form called ciphertext. A ciphertext is a form of a message

that is un-understandable for anyone, that’s why it must be converted back into

plaintext at the receiver’s end. A key is the hypersensitive information used in

encryption and decryption for the transformation of plaintext into ciphertext and

vice versa. Authentication of a cryptosystem depends on key, therefore it must

be kept secret. In cryptography a secure cryptosystem is developed. A system

in which data is converted data or message into secret codes using encryption

algorithm and convert secret codes back into message using decryption algorithm

is known as cryptosystem.

There are five basic components in cryptosystem:

1. Plaintext space M

2. Ciphertext space C

3. Encryption algorithm E

4. Decryption algorithm D

5. Key K
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Cryptography has the following types

• Symmetric Cryptography(secret key cryptography)

• Asymmetric Cryptography (public key cryptography)

2.1.2 Symmetric Cryptography

A system in which same invertible keys is used for both encryption and decryption

is called symmetric key cryptography as shown in the Figure 2.2.

FIGURE 2.2: Symmetric key cryptography

For example, Data Encryption Standard (DES) [29], Double Data Encryption

Standard [30] and Advance Encryption Standard (AES) [31]. The main disadvan-

tage of symmetric key cryptography [32] is key sharing which means that the secret

key is to be transmitted to each party involved in the communication. Electronic

communication used for this purpose may not be a secure way of exchanging keys

because anyone can access the communication channels. The only protected ways

of switching keys is to exchange them privately but it could be a very difficult

task.



Preliminaries 10

2.1.3 Public Key Cryptography

Public key cryptosystem is first proposed by Diffie-Hellman in 1976. In public key

cryptography, there are two different keys used for encryption and decryption, one

of them is called public key which is known to everybody and the other one is

called secret key which is kept secret by user.

The public key cryptography is shown in the Figure 2.3. Here sender encrypt

original text using public key and encryption algorithm to obtain the cipher-text.

The secret key and decryption algorithm are used by the receiver end to obtain

original text.

The RSA cryptosystem [33] and Elgamal cryptosystem [34] are examples of

FIGURE 2.3: Asymmetric key cryptography

asymmetric key cryptography. Diffie and Hellman version of the cryptosystem

based on trapdoor function (which is easy to calculate in one direction but hard to

calculate in other direction). Diffie-Hellman protocol relies on some hard problems

which will be discussed in next section.

2.1.4 Cryptanalysis

A process of acquiring plaintext from ciphertext without knowing the key is called

cryptanalysis. A person who takes the above process is called cryptanalyst. A
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cryptanalyst does this job if any of the four properties (confidentiality, data in-

tegrity, message authentication and non-repudiation) are found to be weak. If

weakness is found then cryptosystem is said to be vulnerable to attack. Crypt-

analysis is mainly used either for attacking a secret communication or to check

the strength of cryptosystem.

2.2 Mathematical Background

In this section, some base mathematical trems and concepts that are used in the

thesis are described here.

Definition 2.2.1. A singular matrix is a matrix whose determinant is zero.

Definition 2.2.2. The characteristics matrix is used a tool for analysing pro-

cess structure. It is a tool to describe the relationship between product character-

istics and process operations. It has been used traditionally with only descriptive

purposes and analysed with a very limited intuitive approach.

Definition 2.2.3. A square matrix is called Nilpotent matrix of order k pro-

vided if it satisfies the relation Ak = O where k is the positive integer, O is a null

matrix of order k × k is the order of the nilpotent matrix.

Definition 2.2.4. A square matrix is said to be diagonalizable matrix if it is

similar to a diagonal matrix. That is, A is diagonalizable if there is an invertible

matrix P and a diagonal matrix D such that. A = PDP−1.

Definition 2.2.5. “Let G be a non empty set and ∗ be a binary operation on G.

Then (G, ∗) is called a Group, if it satisfies the following properties:

• Closure: For all a, b ∈ G, a ∗ b ∈ G.

• Associative: For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

• Identity: There is an element e ∈ G such that a ∗ e = e ∗ a = a
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• Inverse: If p ∈ G, then there exist an element p1 ∈ G such that

p ∗ p1 = p1 ∗ p = e” [35].

A group G is called abelian group, if for p1, p2 ∈ G and binary operation “*” is

commutative that is

p1 ∗ p2 = p2 ∗ p1 ∀ p1, p2 ∈ G”

The following are the examples of group

• Set of integers Z is a group with respect to addition of integers.

• Set of all invertible matrices with ordinary matrix multiplication form a

group.

• Set of real numbers (only non zero elements) R form a group under multi-

plication.

Definition 2.2.6. “A non-empty set together with two binary operations, one is

addition (+) and other is multiplication (·), denoted by (R, +, ·) is said to be a

Ring, if it satisfies the following properties:

• (R, +) is an abelian group.

• (R, ·) is a semi group.

• Distributive property of multiplication over addition holds.

That is ∀ p,m, n ∈ R

p.(m+ n) = p.m+ p.n and

(p+m).n = p.n+m.n” [35].

“A ring is known as commutative ring , if the commutative property of multi-

plication holds, that is u× v = v × u” [36].

The non-commutative ring Mn(R) is the set of all n × n matrices over a ring

R is non-commutative ring because matrix multiplication is not commutative.
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Definition 2.2.7. “A set S, together with two binary operation “+” and “·” is

called the semiring if it satisfies the following conditions:

• S is semi group under “+”,

• S is semi group under “·”,

• Multiplication is distributive over addition in either side. That is, for all

u, v, w ∈ S

u · (v + w) = (u · v) + (u · w)

(u+ v) ·w = (u·w)+(v·w)” [37].

Definition 2.2.8. “A nonempty set F with two binary operation addition (+)

and (·) is called a Field , if it satisfies the following properties:

• (F,+) is an abelian group.

• (F,·) is an abelian group.

• Distributivity of addition over multiplication” [37].

The examples of field are

• Set of real and complex numbers are fields under usual addition and multi-

plication.

• Set of integers Z is not a field as there are no multiplicative inverses in Z”.

2.3 Cryptographic Hard Problems

In this section, some of cryptographic hard problems are explained which are

related to this thesis.
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Definition 2.3.1. Given c, d ∈ Zp such that

cn = d mod p

then finding n is known as discrete logarithm problem [38].

Definition 2.3.2. Let n be a given number, the problem of decomposition of n to

the product of prime pα and qα such that n = pα qα is called integer factorization

Problem [39].

2.4 Diffie-Hellman Key Exchange Protocol

Ralph Merkle [40] introduced the concept of public key protocols, which was later

suggested by Diffie and Hellman . Diffie-Hellman (DH) key exchange protocol

is used to securely exchange keys over a public network. The most well-known

cryptographic challenge is one of privacy, avoiding illegal information extraction

from communications across an unsecure channel. However, in order to employ

cryptography to maintain the privacy, the communicating parties must currently

share a key that no one else knows. This is accomplished by sending the key ad-

vance through a secure route such as private courier or registered mail. However,

a private discussion between two individuals who have never encountered before

is a common occurrence in business, and it is impractical to expect early business

encounters to be postponed long enough for keys to be transmitted practically.

This important distribution problem’s cost and time is a serious obstacle to the

migration of business communications to big teleprocessing networks. DH is sig-

nificant primitive because a shared secret key may be used to establish a session

key, which is employed in a number of different symmetric cryptosystems. Assume

that the given two parties, Ayesha and Bilal, want to swap a private key. Two

parties publicly agree on a large prime number p and g where g < p (also known
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as a generator) of large prime order S( mod q) i.e S is the least positive integer

such that gS = 1 mod p. Two parties, can agree on symmetric key using in this

scheme. The algorithm wroks as follow:

1. Ayesha selects a randomly secret integer value S.

2. Key generation process by the Ayesha

• Select SA such that SA < p

• Calculate public parameter TA

as

TA = gSA mod p

• Send TA to Bilal

3. Bilal selects a randomly secret integer value .

4. Key generation by Bilal is pormed as

• Select SB suchthat SB < p

• Calculate public parameter TB

TB = gSB mod p

• Bilal sends TB to Ayesha

5. Ayesha now calculates her secret key K1 by using

K1 = (TB)SA mod p

6. Bilal computes his private key K2 by using

K2 = (TA)SB mod p

7. K1 = K2
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Example 2.4.1. Let the prime number p is 11 and primitive root g is 7. This

example shows the detailed working of above described algorithm (DH)

1. Select p is prime number and g is primitive root of p

p = 11 , g = 7

2. Ayesha generates Key

here

SA = 3, where SA < p

• Computes public parameter TA by Ayesha.

as

TA = gSA mod p

TA = 73 mod 11

TA = 2 mod 11

• Share TA to Bilal

3. Bilal generates Key

• Select SB such that SB < p

• Calculate his public parameter TB

TB = gTB mod p

TB = 76 mod 11

TB = 4 mod 11

• Bilal Sends TB to Ayesha

4. Now Ayesha calculates her private key K1 by using

K1 = (TB)SA mod p
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K1 = (4)3 mod 11

K1 = 9 mod 11

5. Now Bilal calculate his private key K2 by using

K2 = (TA)SB mod p

K2 = (2)6 mod 11

K2 = 9 mod 11

K1 = K2.

2.5 Algebra of Matrices

Theory of matrices is very important in cryptography therefore this section deals

with rules of addition, multiplication, subtraction, multiplication by a scalar, de-

terminants and inversion of matrices.

Recall that a of elements of a ring R rectangular array arranged in n rows and n

columns in a square bracket is called an n×n matrix over a ring R. That is, n×n

matrix of E is written as

E=


e11 e12 . . . e1n

e21 e22 . . . e2n

. . . . . .

en1 en2 . . . enn


Matrices are usually identified by capital letters such asA,B etc. Instead of writing

all the elements in rectangular array, it is convenient to write the abbreviated

notation as: E = [eij]mn, where eij denotes the entry in the ith row and jth column

of the matrix. The matrix which has m rows and n columns is called rectangular

matrix of order m × n and if m = n, then A is known as square matrix . If each

element of diagonal is an element R in a square matrix then it is known as scalar
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matrix of order n.

Addition of Matrices:

Let us consider an m × n matrix A = [aij]. Then A + (−A) = (−A) + A = 0.

where −A is the additive inverse of A.

Remark. Set of all m × n matrices over a ring R forms an abelian group with

respect to addition ’+’ defined for matrices.

Multiplication of Matrix by a Scalar:

Let A be an m× n matrix and t ∈ R, then this is define as

tA = [taij] = [aijt] = At

Multiplication of Matrices:

The product of order m× n of matrix C of , with the matrix D of order n× p is

an order m× p matrix defined as follows:

If C = [cij] and D = [dij],

then,

F = CD

= [cij][dij]

F = [fij]

where

[fij] = ci1d1j + ci2d2j + . . .+ cindnj

Remark. In general, matrices do not commute.

Next defination are devoted and the brief description of toeplitz matrices and

circulant matrices with the help of examples.

Definition 2.5.1. A matrix in which each declining diagonal from left to right

is constant is called a toeplitz matricx or a diagonal-constant matrix and it is
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named after the German mathematician Otto Toeplitz. A toeplitz matrix is not

necessarily a square matrix. If the i, j element of T is denoted Ti,j, then

Ti,j = Ti+1,j+1 = ti−j

For example, a 5× 5 Toeplitz matrix is given as:

K=



k0 k1 k2 k3 k4

k5 k0 k1 k2 k3

k6 k5 k0 k1 k2

k7 k6 k5 k0 k1

k8 k7 k6 k5 k0


.

2.5.1 Circulant Matrices

In linear algebra, a circulant matrix is a square matrix in which all row vectors

are composed of the same elements and each row vector is rotated one element to

the right relative to the preceding row vector. It is a type of Toeplitz matrix [41].

Circulant matrices are significant in numerical analysis because they are diago-

nalized by a fast Fourier transform, and thus linear equations containing them

can be solved quickly using a fast Fourier transform [42]. Circulant matrices are

also widely used in mathematics [43]. These matrices occur naturally in areas

of mathematics where the roots of unity play a role, and we will discuss some

of the reasons for this in our presentation. Thus ith row of the circulant matrix

of size n × n is obtained from cyclically right shifting the (i − 1)th row by one

position, for i = 2 . . . n, given the first row. Let the first row be the row vector,

[w1, w2, . . . , wn]. Then the circulant matrix W is obtained as

W =


w1 w2 . . . wn

wn w1 . . . wn−1

. . . . . .

w2 w3 . . . w1


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Circulant matrices are used extensively in many fields of mathematics[43]. Circu-

lant matrices have constant values on each downward diagonal, that is, along the

lines of entries parallel to the main diagonal.

2.5.2 Properties of Circulant Matrices

Circulant matrices and the eigenvectors gives us magnificent efficient algorithms.

For example as fast Fourier transform (FFTs). Some properties of circulant are

dissced here.

1. The circulant matrices, hold a surprising property that is the eigenvectors

of circulant matrices are always the same. The eigenvalues are different

for each matrix, but from the knowledge of the eigenvectors one can easily

diagonalize them.

2. Multiplying a circulant matrix with a vector matrix gives us a special kind

of operation that is circular convolution. For this property these kind of ma-

trices holds special significance in many fields like in number theory, cryp-

tography, simulations, digital signal processing etc.

3. The most important property of circulant matrices is that, they are multi-

plicatively commutative.

4. The rank of n× n circulant matrix is n, since element of first row is chosen

such that gcd of (element of first row) = 1.

Definition 2.5.2. Given any two integer r and s, the problem is to find an integer

such that r.t ≡ 1 mod s and r−1≡ t mod s, where 1 ≤ t ≤ s− 1.

The multiplicative inverse of r mod s are relatively prime that is, gcd(r , m) = 1.

Algorithm 2.5.1 (Multiplicative Inverse in Finite Field)

To find the multiplicative inverse in Zp, for implement Euclidean algorithm [44] in

the computer algebra system ApCoCoA [45] can be used.

Following is the method of finding the inverse of r mod s.
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Input: An integer r and an irreducible integer s.

Output: r−1 mod s.

1. Initialize six integers Ui and Vi for i = 1, 2, 3 as

( V1, V2, V3 ) = ( 1, 0, m )

(W1, W2, W3 ) = ( 0, 1, r ).

2. If W3 = 0, return V3 = gcd(r, s); no inverse of r exist in mod s.

3. If W3 = 1 then return W3 = gcd (r, s) and W2 = r−1 mod s.

4. Now divide V3 by W3 and find the quotient Q when V3 is divided by W3.

5. Set ( P1 , P2, P3 ) = (( V1 −QW1 ), ( V2 −QW2 ), ( V3 −QW3 )).

6. Set ( V1, V2, V3 ) = (W1, W2, W3).

7. Set (W1,W2,W3) = ( P1, P2, P3 ).

8. Go to step (2).

2.6 Tropical Algebra

Tropical cryptography is comparatively a new fields in mathematics. It refers

to the study of classical cryptography protocols based on tropical algebras. The

benefits of tropical algebra in cryptography relies on two key features: in tropical

arithmetic, addition and multiplication is faster than usual addition and multipli-

cation, and linear system of equations in tropical arithmetic is harder than linear

system with usual addition. Hence diminishing the linear algebra attacks which

were possible in classical schemes.

2.6.1 Tropical Semiring

The key object of tropical cryptography is min-plus algebra which is also known as

tropical semiring. Let Z∪{∞} be the extended set of integers. A set Z∪{∞} with
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two binary operations tropical addition ⊕ and tropical multiplication ⊗ denoted

by Zmin = (Z ∪ {∞}, ⊕, ⊗) is called tropical semiring.

Tropical addition is defined as, ∀ l, m ∈ Zmin such that:

l ⊕m = min (l, m)

For example, tropical sum of two numbers 2 and 3 is 2

2⊕ 4 = min (2, 4) = 2

Tropical multiplication is defined as, ∀ l, m ∈ Zmin such that:

l ⊗m = l +m

For example, tropical tropical multiplication of two numbers 2 and 3 is 5. it can

be seen as:

2⊗ 5 = 2 + 5 = 7

Tropical addition and multiplication tables with entries from tropical integers

(1, 2, . . . , 7) are given as follows:

⊗ 1 2 3 4 5 6 7

1 2 3 4 4 6 7 8

2 3 4 5 6 7 8 9

3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 11

5 6 7 8 9 10 11 12

6 7 8 9 10 11 12 13

7 8 9 10 11 12 13 14

TABLE 2.1: Multiplication in tropical algebra
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⊕ 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

2 1 2 2 2 2 2 2

3 1 2 3 3 3 3 3

4 1 1 3 4 4 4 4

5 1 2 3 4 5 5 5

6 1 2 3 4 5 6 6

7 1 2 3 4 5 6 7

TABLE 2.2: Addition in tropical algebra

Following axioms hold for tropical addition and multiplication such that for all

u, v;w ∈ Zmin. It satisfies the follwing properties:

1. Associative Law:

l ⊕ (m⊕ n) = (l ⊕m)⊕ n

l ⊗ (m⊗ n) = (l ⊗m)⊗ n

2. Commutative Law:

l ⊕m = m⊕ l

l ⊗m = m⊗ l

3. Distributive Law

(l ⊕m)⊗ n = (l ⊕ n)⊗ (m⊕ n).

4. Identities:

An identity element, is a special type of element of a set w.r.t a binary

operation on that set, which leaves any element of the set unchanged when
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combined with it. The identity element has two types as follow

Additive Identity:

There exists a special element ∞ such that for any l ∈ Zmin

l ⊕∞ =∞⊕ l = l.

Multiplicative Identity:

There exists an element 0 such that for any l ∈ Zmin

l ⊗ 0 = 0⊗ l = l.

5. Inverses:

The inverse is of an element that can undo the effect of combination with

another given element.

Additive Inverse:

Additive inverse in tropical algebra does not exist because there is no element

in a semiring whose minimum is the identity ∞.

Multiplicative inverse:

There exists an element l′ corresponding to l such that

l ⊗ l′ = 0,

where l′ is multiplicative inverse of l defined as l′ = −l.

6. There are some Counter properties of these operations as well:

l ⊕ l = l (idempotent semiring)

l ⊕ 0 could either be 0 or l

l ⊗∞ =∞

So, Zmin = (Zmin ∪ {∞}, ⊕, ⊗)

Example 2.6.1. Following are the examples of tropical semiring
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• Tropical integers Zmin = (Zmin ∪ {∞}, ⊕ , ⊗).

• Qmin = (Qmin ∪ {∞}, ⊕ , ⊗).

• Rmin = (Rmin ∪ {∞}, ⊕ , ⊗).

Tropical arithmetic can be hard because tropical addition operation is not invert-

ible.

While tropical multiplication operation is invertible and inverse of this operation

is denoted by � and defined as l �m = l −m

for example 7� 2 = 7− 2 = 5

2.6.2 Tropical Monomials

Let x1, x2, . . . , xn represent the elements of the tropical semiring then the tropical

product of these elements (where elements can be repeated) is known as tropical

monomial.

x1 ⊗ x1 ⊗ x1 ⊗ x2 ⊗ x3 ⊗ x3 = x31 x2 x23.

Alternative notation of x⊗ x⊗ x = x⊗3. It can also be write the above equation

as

x31 x2 x
2
3 = x⊗31 x2 x

⊗2
3 .

A tropical monomial [46] represents a linear function f : Rn 7→ R. Evaluating this

function in classical arithmetic, monomials in n-variables are linear functions with

integer co-coefficients shown as

x⊗21 x⊗32 x⊗23 = x1 + x1 + x2 + x2 + x2 + x3 + x3

= 2x1 + 3x2 + 2x2.
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Negative powers are expressed as

x⊗−21 x⊗−132 x⊗−73 = − 2x1 − 13x2 − 7x2.

2.6.3 Tropical Polynomial

A finite linear combination of tropical monomials is known as tropical polynomial.

Generally, a tropical polynomial can be written as

P (x1, x2, . . . , xn ) = (a⊗ xi11 , xi22 , . . . xinn )⊕ (b⊗ xj11 , x
j2
2 , . . . , x

jn
n )⊕ . . .

where a, b, . . . are real numbers while powers i1, i2, . . . , in and j1, j2, . . . , jn are

integers

Definition 2.6.1. Degree of Polynomial:

It is defined as the highest power of the tropical monomial in a tropical polynomial.

Example 2.6.2. Let a polynomial p(x) is

P (x) = x⊗8 x⊗6 x⊗3

has a degree 8, by the highest degree of its monomials.

P (x1, x2, . . . , xn) = ( x⊗31 ⊗ x2 ⊗ x⊗23 )⊕ x3 ⊕ 10.

This polynomial has degree 6 by the sum of exponents of the different variables

(3 + 1 + 2) in monomials.

2.7 Tropical Matrix Algebra

Consider a matrix Mn(Zmin) of order n×n with entries from tropical semiring Zmin

equipped with operations tropical addition ⊕ and multiplication ⊗, then Mn(Zmin)

is known as tropical matrix. A tropical algebra used in matrix operations with
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respect to addition and multiplication is known as tropical matrix addition and

tropical matrix multiplication respectively.

2.7.1 Tropical Matrix Addition

In tropical matrix addition , consider two tropical matrices A and B then matrix

H = (hij) is formed by the tropical addition of the elements of A = (aij) and

B = (bij). It is represented as

H = A⊕B

hij = aij ⊕ bij
where ⊕ represents the tropical sum.

Example 2.7.1. The example of tropical matrix addition, consider the following

two matrices of order 2× 2 with entries from Z+

A =

3 6

2 5

 , B =

5 4

7 1



H =

3 6

2 5

⊕
5 4

7 1

 =

3 4

2 1

 .

2.7.2 Tropical Matrix Multiplication

Given n× n matrices, tropical matrix multiplication is same as usual matrix mul-

tiplication except usual addition and multiplication operations are replaced by

tropical addition and multiplication.

X = C ⊗D

xij = ⊕{cik ⊗ dkj}
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where ⊕ represents the tropical sum.

and ⊗ represents the tropical multip;ication.

Example 2.7.2. The following example shows the tropical multiplication of two

matrices C and D of order 2× 2

C =

3 9

4 8

 , D =

6 4

3 1



X =

3 9

4 8

 ⊗

6 4

3 1



X =

 9⊕ 12 7⊕ 10

10⊕ 11 8⊕ 9

 =

 9 7

10 8

 .

2.7.3 Scalar Multiplication

Consider a tropical matrix A and k be any scalar. Then scalar multiplication k ⊗

A is obtained by adding scalar k to each entry of A

k ⊗ A = k ⊗ Aij

k ⊗ A = k ⊕ Aij.

Example 2.7.3. Assume the tropical matrix A of order 2 × 2, where k be any

scalar. The example of scalar multiplication is

A =

2 3

6 4

 , k = 6
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k ⊗ A = 6⊗

2 3

6 4


k ⊗ A =

6⊗ 2 6⊗ 3

6⊗ 6 6⊗ 4

 =

 8 9

12 10

 .

Similarly, multiplying a scalar with a square matrix is same as to multiply it with

the corresponding scalar matrix. Scalar matrices are the matrices which have

some scalar h ∈ Zmin on the diagonal and ∞ elsewhere denoted by

h ∞

∞ h

 .

So, multiplication of scalar matrix with any square matrix of the same order is

shown as:

7⊗

1 4

3 2

 =

1 4

3 2

⊗
 7 ∞

∞ 7

 =

 8 11

10 9

 .

2.7.4 Matrix Exponents

Consider a tropical matrix B of order n× n. Let B1 = B then matrix exponents

are computed as

B⊗k = B ⊗B⊗k−1.

Example 2.7.4. let B be a tropical matrix of order 2× 2.

B =

5 4

3 2


for k =2, we have

B⊗2 = B ⊗B⊗1 =

5 4

3 2

⊗
5 4

3 2


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B⊗2 = B ⊗B⊗1 =

(5⊗5)⊕ (4⊗3) (5⊗4)⊕ (4⊗2)

(3⊗5)⊕ (2⊗3) (3⊗4)⊕ (2⊗2)



B⊗2 = B ⊗B⊗1 =

10⊕ 7 9⊕ 6

8⊕ 5 7⊕ 4

 =

7 6

5 4


for k = 3

B⊗3 = B ⊗B⊗2 =

5 4

3 2

⊗
5 4

3 2

⊗2

B⊗3 = B ⊗B⊗2 =

5 4

3 2

⊗
7 6

5 4



B⊗3 = B ⊗B⊗2 =

(5⊗7)⊕ (4⊗5) (5⊗6)⊕ (4⊗4)

(3⊗7)⊕ (2⊗5) (3⊗6)⊕ (2⊗4)



B⊗3 = B ⊗B⊗2 =

12⊕ 9 11⊕ 6

10⊕ 7 9⊕ 6

 =

9 6

7 6

 .

2.7.5 Some Properties of Tropical Algebra

Following are the properties of tropical algebra with respect to matrix addition

and multiplication.

1. Associative Property w.r.t Addition

Tropical matrices satisfy associative property of addition

(B ⊕ C)⊕D = B ⊕ (C ⊕D).

Example 2.7.5. Consider three tropical matrices B,C and D are
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B =

4 5

6 3

 , C =

3 5

2 9

 and D =

2 4

3 5


then

B ⊕ C =

4 5

6 3

⊕
3 5

2 9

 =

3 5

2 3



C ⊕D =

3 5

2 9

⊕
2 4

3 5

 =

3 4

2 5

 .

hence,

(B ⊕ C)⊕D =

3 5

2 3

⊕
2 4

3 5

 =

2 4

2 3



B ⊕ (C ⊕D) =

4 5

6 3

⊕
3 4

2 5

 =

3 4

2 3

 .

2. Associative Property w.r.t Multiplication

The tropical matrices satisfy associative property of multiplication. That is,

(B ⊗ C)⊗D = B ⊗ (C ⊗D).

Example 2.7.6. Consider three tropical matrices B,C and D

B =

9 3

2 4

 , C =

3 4

2 6

 and D =

7 3

2 8



then

B ⊗ C =

9 3

2 4

⊗
3 4

2 6


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B ⊗ C =

(9⊗3)⊕ (3⊗2) (9⊗4)⊕ (3⊗6)

(2⊗3)⊕ (4⊗2) (2⊗4)⊕ (4⊗6)



B ⊗ C =

12⊕ 5 13⊕ 9

5⊕ 6 6⊕ 10

 =

5 9

5 6



C ⊗D =

3 4

2 6

⊗
7 3

2 8



C ⊗D =

(3⊗7)⊕ (4⊗2) (3⊗3)⊕ (4⊗8)

(2⊗7)⊕ (6⊗2) (2⊗3)⊕ (6⊗8)



B ⊗ C =

10⊕ 6 6⊕ 12

9⊕ 8 5⊕ 14

 =

6 6

8 5


hence,

(B ⊗ C)⊗D =

5 9

5 6

⊗
7 3

2 8



(B ⊗ C)⊗D =

(5⊗7)⊕ (9⊗2) (5⊗3)⊕ (9⊗8)

(5⊗7)⊕ (6⊗2) (5⊗3)⊕ (6⊗8)



(B ⊗ C)⊗D =

12⊕ 11 8⊕ 17

12⊕ 8 8⊕ 14

 =

11 8

8 8



B ⊗ (C ⊗D) =

9 3

2 4

⊗
6 6

8 5



B ⊗ (C ⊗D) =

(9⊗6)⊕ (3⊗8) (9⊗6)⊕ (3⊗5)

(2⊗6)⊕ (4⊗8) (2⊗6)⊕ (4⊗5)





Preliminaries 33

B ⊗ (C ⊗D) =

15⊕ 11 15⊕ 8

8⊕ 12 8⊕ 9

 =

11 8

8 8


This example shows that the matrices satisfy the associative property w.r.t

multiplication.

3. Commutative Property w.r.t Addition

Tropical matrices satisfy commutative property of addition

B ⊕ C = C ⊕B.

Example 2.7.7. The example of commutative property w.r.t addition is

follows given as. Assume that the matrices B and C are tropical matrices

B =

9 7

6 5

 , C =

3 4

8 5



B ⊕ C =

9 7

6 5

⊕
3 4

8 5

 =

3 4

6 5



C ⊕B =

3 4

8 5

⊕
9 7

6 5

 =

3 4

6 5

 .

This example satisfies the relation of commutative property w.r.t addition.

4. Commutative Property w.r.t Multiplication

Let the matrix B be a tropical matrix, r and s be any two positive integer

it is valid that:

B⊗r ⊗B⊗s = B⊗s ⊗B⊗r

Example 2.7.8. Let the matrix B be a tropical matrix, r and s be any two

positive integer
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B =

2 4

3 6

 , r = 2 and s = 3

then,

B⊗2 =

2 4

3 6

⊗
2 4

3 6

 =

4 6

5 7



B⊗3 =

2 4

3 6

⊗
4 6

5 7

 =

6 8

7 9



B⊗2 ⊗B⊗3 =

4 6

5 7

⊗
6 8

7 9

 =

10 12

11 17



B⊗3 ⊗B⊗2 =

6 8

7 9

⊗
4 6

5 7

 =

10 12

11 13

 .

Similarly, scalar matrices commutes with any other square matrix of same

size. In scalar matrices, commutativity is shown as;

B ⊗ C =

 6 ∞

∞ 6

⊗
5 4

3 2

 =

11 10

9 8



C ⊗B =

5 4

3 2

⊗
 6 ∞

∞ 6

 =

11 10

9 8

 .

5. Additive Identity

There is an additive identity matrix say Q which is when added to any matrix

of same dimension, matrix does not change such that B ⊕Q = B. Additive

identity matrix in A2×2 is denoted by Q =

∞ ∞

∞ ∞

 as,

B ⊕Q =

e1 f1

g1 h1

⊕
∞ ∞

∞ ∞


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B ⊕Q =

e1 f1

g1 h1

 .

6. Multiplicative Identity Matrix

The n × n identity matrix, denoted by I is a matrix consisting of 0 on the

diagonal and ∞ elsewhere such that B ⊗ I = B.

In A2×2 identity matrix is denoted as

 0 ∞

∞ 0

 such that it satisfies as

folloeing,

B ⊗ I =

e1 f1

g1 h1

⊗
 0 ∞

∞ 0

 =

e1 f1

g1 h1


7. Additive Inverse Matrix:

Additive inverse of matrices do not exist

8. Multiplicative Inverse Matrix:

The multiplicative inverse of a matrix B is a matrix denoted by B′ such that

B ⊗B′ = I. In A2×2, inverse matrix of a matrix B is denoted by B′ where,

if B =

 b ∞

∞ b

 then B′ =

−b ∞
∞ −b


such that

B ⊗B′ =

 b ∞

∞ b

⊗
−b ∞
∞ −b

 =

 0 ∞

∞ 0

 .

In tropical algebra, only diagonal matrices are invertible.

Definition 2.7.1. Diagonal Matrices are the matrices which have some scalar

on diagonal and∞ elsewhere is a diagonal matrix. The example of diagonal matrix

is  3 ∞

∞ 3


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2.8 Matrix Power Function

The matrix power function is based on a matrix powered by another matrix. This

function is some generalization of discrete exponent function in cyclic groups by

its expansion in matrix set.

Definition 2.8.1. The left-sided MPF corresponding to a matrix Y powered

by a matrix Ls on the left side is equal to matrix W = wij has the following form

LsY = W, wij =
m∏
k=1

ylikkj

Definition 2.8.2. The right-sided MPF corresponding to matrix a Y powered

by matrix a Rs on the right side is equal to matrix U = uij has the following form

Y Rs = U, uij =
m∏
k=1

y
lkj
ik

Note: The matrix which is powered by another matrix in named as base matrix

and the matrix that is powering the base matrix are known as power matrix. In

general, base matrix is defined over a semigroup and power matrices is defined

over a semiring.

The follow example illustrates the above defination.

Example 2.8.1. Consider a base matrix Y of order 2 × 2 and power matrix L

of order 2 × 2 then the left side matrix power W is computed as Let us assume

that matrices Ls and Y have two columns and two rows then matrix W can be

expressed in the following way

W = LsY =

`11 `12

`21 `22

 y11 y12

y21 y22



W =

y`1111 y
`12
21 y`1112 y

`12
22

y`2111 y
`22
21 y`2112 y

`22
22


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A base matrix Y of order 2× 2 and power matrix R of order 2× 2 then the right

side matrix power U is computed as

U = Y Rs =

y11 y12

y21 y22


r11 r12

r21 r22



U =

yr1111 y
r21
12 yr1211 y

r22
12

yr1121 y
r21
22 yr1221 y

r22
22


Proposition 2.8.1. Properties of Matrix Power Function

The properties of matrix power function are given below

Rs(LsY ) = (RsLs)Y = RsLsY (2.1)

(Y Ls)
Rs

= Y (LsRs) = Y LsRs (2.2)

Ls(Y Rs) = (LSY )Rs = LSY Rs (2.3)

To prove the equation (2.1), let Y belong to to semi-group. Let Rs and Ls belong

to a semi-ring R.

Y =

y11 y12

y21 y22



Ls =

`11 `12

`21 `22



Rs =

r11 r12

r21 r22


Now
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LsRs =

`11r11 + `12r11 `11r12 + `12r11

`12r11 + `11r12 `12r12 + `11r11



Y (LsRs) =

y11 y12

y21 y22


`11r11 + `12r12 `11r12 + `12r11

`12r11 + `11r12 `12r12 + `11r11



Y (LsRs) =

y`11r11+`12r1211 y`12r11+`11r1212 y`11r12+`12r1111 y`12r12+`11r1112

y`11r11+`12r1221 y`12r11+`11r1222 y`11r12+`12r1121 y`12r12+`11r1122

 (2.4)

Y Ls =

y11 y12

y21 y22


`11 `12

`21 `22



Y Ls =

y`1111 y
`12
12 y`1111 y

`12
12

y`2121 y
`22
22 y`2121 y

`22
22



(Y Ls)Rs =

y`1111 y
`12
21 y`1112 y

`12
22

y`2111 y
`22
21 y`2112 y

`22
22


r11 r12

r21 r22



(Y Ls)Rs =

(y`1111 y
`12
12 )r11 .(y`1211 y

`11
12 )r12 (y`1111 y

`12
12 )r12 .(y`1211 y

`11
12 )r11

(y`1121 y
`12
22 )r11 .(y`1221 y

`11
22 )r12 (yl1121 y

`12
22 )r12 .(y`1221 y

`11
22 )r11



(Y Ls)Rs =

y`11r11+`12r1211 y`12r11+`11r1212 y`11r12+`12r1111 y`12r12+`11r1112

y`11r11+`12r1221 y`12r11+`11r1222 y`11r12+`12r1121 y`12r12+`11r1122

 (2.5)

From (2.4) and (2.5), it can be seen that (Y Ls)Rs = XLsRs

Similary, it can also be proved that the Equation (2.2) and (2.3) holds.
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2.9 MPF and Circulant Matrix using Tropical

Algebra

The MPF is based on a matrix powered by another. Matrix Ai is circulant matrix.

Ri and Si is also circulant matrix and tropical addition and multiplication is

defined as, ∀ a, r ∈ Zmin such that

a⊕ r = min (a, r)

a⊗ r = a+ r

Ai is circulant matrix. Ri and Si are also circulant matrices then

A =

a11 a12

a21 a22

 , R =

 r11 r12

, r21 r22

 .

Example 2.9.1. The example shows the multiplication of matrices by using ma-

trix power fuction, for this purpose two circulant matrices A and R are used. The

given matices A and R are the circulant matrices

A =

2 5

5 2

 , R =

1 3

3 1



M = A⊗r

M =

2 5

5 2

⊗
1 3

3 1


mod 10

M =

2⊗1⊗5⊗3 2⊗3⊗5⊗1

5⊗1⊗2⊗3 5⊗3⊗2⊗1

 mod 10
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M =

2⊗15 6⊗5

5⊗6 15⊗2

 mod 10

M =

17 11

11 17

 =

7 1

1 7

 mod 10

Hence a resulting matrix M is computed as a result of tropical multiplication in

mod 10. It is different from order multiplication of square matrices.



Chapter 3

A Concurrent key Exchange

Protocol Based On Commuting

Matrices

In this chapter, the key exchange protocol by Almulla et al.[20] is presented. Their

proposed protocol is based on singular and non diagonizable matrices. The key

exchange protocol is illustrated by using the different examples.

3.1 Cryptographic Protocol for Symmtric Key

Exchange

For the key exchange purpose two or more communicating parties that never

met before, must safely share some common data, which is known as the session

key or the private key, through an insecure channel. This shared knowledge can

eventually be used to seure communication in symmetric-key cryptography. Key

exchange techniques have been appeared in the literature since 1970’s [47]. Fur-

thermore, some of these protocols have shown to be inefficient [48]. The next

section introduces a key exchange protocol based on m square singular matrices of

order n × n, whose composition commutes. The key exchange protocol discribed

41
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below gives the improvment of Rajan [16], also the cryptanalysis by Wang et al. ,

[21].

3.2 The Key Exchange Protocol of Almulla et

al.

In this section, a concurrent key exchange protocol is discussed, that is based on

m commuting singular matrices U1, U2, . . . , Un all of size n× n. Where the lenght

of key is n, that swapped and all computations are carried out in the finite field

(Fp). Also the invariant p is a very (large) prime number. For scerity assurance of

this protocol, these properties for the matrices Ui, where i = 1, 2, . . . ,m are used.

• Ui is singular matrix .

• Ui is not diagonalizable.

• There is no small integer k exist such that Uk
i = Ui, also there is no integer

η such that Uη
i = 0 (i.e, Ui is not a nilpotent matrix). Matrices with these

properties can easily be detected (thus eliminated) from the computation

step of their characteristic polynomial.

Γn(Fp) is denoted by the set of all n× n matrices with entries in Fp that obey the

aforementioned properties.

Suppose that two or more entities are used to establishe a shared secret key, K over

an insecure but authenticated channel. First of all, the authenticities involved in

the generations of secret key must be publicly agreed on the following information.

• P is a very large prime number.

• The initial vector W = (w1, w2, . . . , wn) ∈ FnP .

• A set of m commuting matrix U = U1, U2, . . . , Um,

where Ui ∈ Γn for all i = 1, 2, . . . ,m.
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The process for selecting commuting matrices justifies the aforementioned condi-

tions that are used in the proposed key exchange protocol.

In agreement with these public parameters, each party involve in the key exchange

concurrently yet secretly generate a sequence of length m of positive integers. For

improved security, these numbers may be generates by using a true random or

pseudo random source. Here a simple yet secure chaotic pseudo random numbers

is generated that may be used for this purpose. By generating his/her own se-

quence of positive integer, each party individually use his/her own sequence to

compute an n-vector, which is then transmitted through an insecure but authen-

ticated channel, for this purpose the numbers are involved the exchange of private

key. Firstly the key exchange algorithm is described with two parties Ayesha and

Bilal. After wards, the method is discussed that can be generalized to involve

more than two parties.

To generate her public key Wa, Ayesha performs the following steps.

1. Ayesha chooses a secretly (true random or pseudo random) sequence

m1, m2, . . . ,mm of positive integer.

2. She computes the matrix Ua = Um1
1 Um2

2 . . . Umm
m and then n-vector

Wa = UaW .

3. She sends Wa to Bilal.

Similarly, Bilal performs the following steps to generate his public key, Wb.

1. Bilal chooses a secretly (true random or pseudo random) sequence

n1, n2, . . . , nm of positive integers.

2. He computes the matrix Ub = Un1
1 Un2

2 . . . Unm
m and then n-vector

Wb = UbW

3. He sends Wb to Ayesha.

Upon receiving Bilal’s vector Wb, Ayesha computes Xa = UaWb. At Bilal’s end,

after receiving Ayesha’s vector Wa, he computes Xb = UbWa. Now because the



Commuting matrices based concurrent key exchange protocol based on 44

matrices U1, U2, . . . , Um commute, so

Wa = Wb = Um1+n1
1 Um2+n2

2 . . . Umm+nm
m W.

The n vector that are equal (Xa = Xb) is denoted by Kab, serves as the secret

key shared by Ayesha and Bilal. An intruder Eve who has intercepted Wa and

Wb cannot find the secret key Kab without the knowledge of Ayesha’s sequence

m1,m2, . . .mm and Bilal’s sequence n1, n2, . . . nm. Thus the security of this algo-

rithm relies on the difficulty of computing such a sequence. The process is illusted

in the following table.

TABLE 3.1: Key Exchange Protocol

Ayesha Bilal

1. Choose randomly m secret postive 1. Choose randomly m secret postive

integers m1,m2, . . . ,mm integers n1, n2, . . . , nm.

2. Compute Ua = Um1
1 Um2

2 , . . . , Umm
m . 2. Compute Ub = Un1

1 Un2
2 , . . . , Unm

m .

3. Computing Wa = UaW . 3. Computing Wb = UbW

4.Ayesha and Bilal exchange the following vector

Wa → Wa

Wb ← Wb

5. Calulates Xa = UaWb = UaUbW 5. Calculate Xb = UbWa = UbUaW

6. Ayesha and Bilal exchange the following vector

Kab = UaWb = UbWa

The key exchange protocol uses public parameters U1, U2, . . . , Um and W =

(w1, w2, . . . , wm) to compute the private keyKab on eacha side.

Example 3.2.1. Here, to give the illustration of above described process an ex-

ample is given. For intelligibility, only two entities Ayesha and Bilal who concur

on field F13, the three commuting 2 × 2 singular matrices U1, U2, U3 given later

and intial 2-vector W = (3, 5).
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u1 =

1 2

2 4

 , u2 =

6 4

3 2

 , u3 =

1 4

1 4

.

Ayesha randomly choses m secret positive integers

m1 = 1, m2 = 2, m3 = 1,

while on the other end randomly chosen m secret positive integers are

n1 = 1, n2 = 1, m3 = 2.

Ayesha and Bilal compute the matrices Ua and Ub by using these sequences re-

spectively.

Ayesha performs the following steps

Ua = U1
m1 U2

m2 U3
m3

Ua =

1 2

2 4

1 6 4

3 2

2 1 4

1 4

1

mod 13

Ua =

1 2

2 4

 48 32

24 216

 1 4

1 4

 mod 13

Ua =

 96 64

192 128

 1 4

1 4

 mod 13

Ua =

160 640

320 1280

 =

4 3

8 6

 mod 13.

To get the values of Wa

Wa = Ua W
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Wa =

4 3

8 6

 3

5

 =

1

2

 mod 13.

Bilal perform the following steps

Ub = U1
n1 U2

n2 U3
n3

Ub =

1 2

2 4

1 6 4

3 2

1 1 4

1 4

2

mod 13

Ub =

1 2

2 4

 6 4

3 2

 5 20

5 20

 mod 13

Ub =

12 8

24 16

 5 20

5 20

 mod 13

Ub =

100 400

200 800

 =

9 10

5 7

 mod 13.

Computing Wb by using Ub and intial vector W

Wb = Ub W

Wb =

 9 10

18 7

 3

5

 =

12

11

 mod 13.

Ayesha and Bilal exchange the following vectors Wa and Wb with each other

Xa = Ua Wb

Xa =

4 3

8 6

 12

11

 =

48 + 33

96 + 66

 mod 13
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Xa =

 81

162

 =

3

6

 mod 13

Xb = Ub Wa

Xb =

9 10

5 7

 1

2

 =

9 + 20

5 + 14

 mod 13

Xb =

29

19

 =

3

6

 mod 13

Xa = Xb

K = UaWb = UbWa.

The above example shows that computing steps taken by the both parties to find

the same secret key K.

3.3 Cryptanalysis

The proposed cryptanalysis [22] of the key exchange protocol based on commuting

matrices tells that the key K is unsecure in the sense that an adversary, can solve

homogeneous linear equations efficiently in a specified Mn(Fq) and also crack the

key exchange protocol. The description of more effcient and conceptually simpler

attacks on the key exchange protocol based on commuting matrices is proposed

in [22]. In the proposed cryptanalysis [22], the use of element tools shown that

the structural vulnerabilities of the system. An attacker is observing the key ex-

change protocol of the scheme [22] and gets the public information. After this,

an attacker searches for a key K = AaXb = AbXa in section (IV) of the proposed

cryptanalysis [22]. For this purpose, he searches for a pair of matrix (Aa, Ab).

According to proposition 3 mentioned in [22], if an adversary can find a pair of
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matrices (Aa, Ab), then the key agreement protocol based on commuting matrices

can be broken. The proposition 4 stated that the key agreement protocol can

be broken for all given public keys. The method of compution Aa and Ab is de-

scribed in algorithm 1[22] by using the value of Aa and Ab can be computes the

key K = AaXb = AbXa. The search for the existance of the groups on whom

the secure key exchange protocol based on commuting matrices is secure is still

an open problem. Therefore for developing a key exchange protocol based on

commuting matrices on other groups, the above described considerations must be

taken into account. Multiplication of matrices have non-commutative attribute, so

matrix-based cryptosystems have the ability to resist known quantum algorithms

attacks. Another open topic is that whether it is possible to build a public key

cryptosystem that can resist the attacks from known quantum algorithms using

many nonabelian algebraic structures.

3.4 Improved Security

The improvment of this scheme are discrete logarithm problem and the matrix

decomposition. Also with symmetrical decomposition problem (SDP) and matrix

decomposition problem (MDP) having a large key space it is computationally and

practically infeasible to recover the secret keys. The use of coupled hard problems

provides more security then the key exchange presented in [20].

By using tropical algebra over classical algebra is that it increased efficiency be-

cause tropical addition and multiplication of matrices is significantly faster than

usual addition and multiplication of matrices. As algebraic attack does not works

on min-plus equations so tropical scheme have also increased the security of our

modified scheme. Further details are described in chapter 4.



Chapter 4

Key Exchange Protocol Based on

MPF and Circulant Matrix over

Tropical Algebras

In this chapter, the key shering scheme prestened in Chapter 3, is modified in the

setting of tropical algebras. In this setting the circulants matrices need not satisfy

the condition given in section. The notion of matrix power function in tropical

algebra is introduces and used for the constraction of the scheme [20]. In the

modified scheme, the chosen matrices ri and si which are circulant matrices are

used instead of inegers.

For this purpose Vi is used as random circulent matrices. The modified scheme

uses minus plus algebra for the compilation of proposed scheme instead of usual

matrix, circulent matrics are chosen in this way will provide a good security of this

scheme that realises on the difficulty of calculating the symmetrical decomposition

and in particular an attacker has to solve discreet log problem.

Ya = Va ⊗Xb

Ya = (V1
⊗ R1 ⊗ V2⊗ R2 .........⊗ Vm⊗ Rm)⊗Xb.

The examples are also given to explain the working of proposed scheme.

49
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4.1 The Proposed Key Exchange Protocol

In this section, the modified form of the key exchange protocol is explained,that

was described in Chapter 3.

Algorithm 4.1.1 (Key Exchange Protocol Based on MPF and Circulant

Matrics over Tropical Algebras)

In this section, the modified key exchange protocol is prestented that is based

on an n circulant and MPF, where matrices V1, V2, · · · , Vn are all of size n × n.

Where the lenght of key is n, that swapped and all computations are carried out

in the finite field (Fp). Also the invariant p is a very (large) prime number. Global

parameter of this scheme are, Vi is circulant matrix where i = 1, 2, · · · ,m, an

initial vector X = (x1, x2, · · · , xn) ∈ Fnp and prime number p. The private keys

are Ri and Si are also circulant matrices where i = 1, 2, · · · ,m.

Input: Circulant matrix (Vi) and initial vector X.

Output: Ya, Yb

To generate the public key, Xa Aysha calculates the following steps

1. Randomly choose m circulant matrices as her

R1, R2, · · · , Rm.

2. Use MPF over tropical algebra to compute the matrix

Va = (V1
⊗ R1 ⊗ V2⊗ R2 ⊗ . . .⊗ Vm⊗ Rm).

3. Then compute n-vector Xa as

Xa = Va ⊗X.

4. Send Xa to Bilal. Similarly, Bilal performs the following steps to generate

his public key, Xb.
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5. Randomly choose m a circulant matrices

S1, S2, . . . , Sm.

6. Use MPF over tropical algebra to compute the matrix

Vb = (V1
⊗ S1 ⊗ V2⊗ S2 ⊗ . . .⊗ Vm⊗ Sm).

7. Then compute n-vector Xb as

Xb = Vb ⊗X.

8. Send Xb to Ayesha.

9. Upon receiving Bilal’s vector Xb, Ayesha computes

Ya = Va ⊗Xb.

10. After receiving Ayesha’s vector Xa, he computes

Yb = Vb ⊗Xa.

Hence the both communicats parties the same common as secret key hence

Ya = Yb.

The “n vector Ya = Yb that is denoted by Kab serves as the secret key shared

by Ayesha and Bilal. An intruder Eve who has intercepted Xa and Xb can-

not find the secret key Kab without the knowledge of Ayesha circulant matrices
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R1, R2, · · · , Rm and Bilal circulant matrices S1, S2, , · · · , Sm.

TABLE 4.1: Key exchange protocol based on MPF and circulant matrices

Ayesha Bilal

1. Choose randomly m circulant matrix 1. Choose randomly m circulant matrix

R1, R2, . . . , Rm S1, S2, . . . , Sm.

2. Compute Va = V ⊗R1
1 V ⊗R2

2 ....V ⊗Rm
m . 2. Compute Vb = V ⊗S1

1 V ⊗S2
2 ....V ⊗Sm

m .

3. Compute Xa = Va ⊗X. 3. Compute Xb = Vb ⊗X

4. Ayesha and Bilal exchange the following vector

Xa → Xa

Xb ← Xb

5. Calulate Ya = Va ⊗Xb = Va ⊗ Vb ⊗X 5. Calculate Yb = Vb ⊗Xa = Vb ⊗ Va ⊗X

6. Ayesha and Bilal exchange the following vector

Kab = Va ⊗Xb = Vb ⊗Xa

4.1.1 Correctness

The correctness of the scheme described in the following theorem.

Theorem 4.1.1. If the both communicats parties have the same common secret

key than the proposed key exchange protocol is valid.

Ya = Yb.

Proof:

Ya = Va ⊗Xb

= Va ⊗ Vb ⊗X
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= Vb ⊗ Va ⊗X

= Vb ⊗Xa

Ya = Yb.

Example 4.1.1. This section demonstrates a basic example of the aforementioned

protocol. For the simplicity, purpose only two entities are considerd, Ayesha and

Bilal, who agree on the field F11”. Vi, Ri and Si are 2×2 circulant matrcies where

i = 1, 2, · · · and intial vector X = (4, 6)

V1 =

2 3

3 2

 , V2 =

8 9

9 8


Ayesha are chosen r secret circulant matrices.

R1 =

4 5

5 4

 , R2 =

6 7

7 6


Bilal are chosen s secret circulant matrices.

S1 =

4 6

6 4

 , S2 =

1 3

3 1



Ayesha and Bilal calculate the matrices Va and Vb to use the following procedures,

respectively.

The following steps are that Ayesha have to do for computing the matrix Va.

Va = V1
⊗ R1 ⊗ V2⊗ R2

Va =

2 3

3 2

⊗
4 5

5 4


⊗

8 9

9 8

⊗
6 7

7 6


mod 11
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Va =

2⊗4⊗3⊗5 2⊗5⊗3⊗4

3⊗4⊗2⊗5 3⊗5⊗2⊗4

⊗
8⊗6⊗9⊗7 8⊗7⊗9⊗6

9⊗6⊗8⊗7 9⊗7⊗8⊗6

 mod 11

Va =

 8⊗15 10⊗12

12⊗10 15⊗8

⊗
48⊗63 56⊗54

54⊗56 63⊗48

 mod 11

Va =

23 22

22 23

⊗
1 0

0 1

 mod 11

Va =

(23⊗1)⊕ (22⊗0) (23⊗0)⊕ (22⊗1)

(22⊗1)⊕ (23⊗0) (22⊗0)⊕ (23⊗1)

 mod 11

Va =

24⊕ 22 23⊕ 23

23⊕ 23 22⊕ 24

 =

22 23

23 22

 =

0 1

1 0

 mod 11.

Bilal must do the following procedures in order to calculate the matrix Vb

Vb = V1
⊗ S1 ⊗ V2⊗ S2

Vb =

2 3

3 2

⊗
4 6

6 4


⊗

8 9

9 8

⊗
1 3

3 1


mod 11

Vb =

2⊗4⊗3⊗6 2⊗6⊗3⊗4

3⊗4⊗2⊗6 3⊗6⊗2⊗4

⊗
8⊗1⊗9⊗3 8⊗1⊗9⊗1

9⊗1⊗8⊗3 9⊗3⊗8⊗1

 mod 11

Vb =

 8⊗18 12⊗12

12⊗12 18⊗8

⊗
8⊗27 24⊗9

9⊗24 27⊗8

 mod 11
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Vb =

4 2

2 4

⊗
2 0

0 2

 mod 11

Vb =

(4⊗2)⊕ (2⊗0) (4⊗0)⊕ (2⊗2)

(2⊗2)⊕ (4⊗0) (2⊗0)⊕ (4⊗2)

 mod 11

Vb =

6⊕ 2 4⊕ 4

4⊕ 4 2⊕ 6

 =

2 4

4 2

 mod 11.

Ayesha calculates the value of Xa by using Va and initial vector X

Xa = Va ⊗X

Xa =

0 1

1 0

⊗
4

6

 =

4⊕ 7

5⊕ 6

 =

4

5

 mod 11.

Bilal computes the value of Xb by using Vb and initial vector X.

Xb = Vb ⊗X

Xb =

2 4

4 2

⊗
4

6

 =

6⊕ 10

8⊕ 8

 =

6

8

 mod 11

Using Xb, Ayesha computes Ya

Ya = Va ⊗Xb

Ya =

0 1

1 0

⊗
6

8

 =

6⊕ 9

7⊕ 8

 =

6

7

 mod 11

Using Xa, Billa computes Yb

Yb = Vb ⊗Xa
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Yb =

2 4

4 2

⊗
4

5

 =

6⊕ 9

8⊕ 7

 =

6

7

 mod 11

Hence

Ya = Yb

K = Va ⊗Xb = Vb ⊗Xa

The above example shows that the computing key K by two parties have share

the same secret key

Example 4.1.2. A basic example of the aforementioned protocol is descibe .For

the clarity, suppose just two entities, Ayesha and Bilal, who concur on the field

F23. Vi, Ri and Si are circulant matrcies where i = 1, 2, · · · and the intial vector

X = (2, 3, 5).

V1 =


3 4 5

5 3 4

4 5 3

 , V2 =


2 8 4

4 2 8

8 4 2


Ayesha are chosen R secret circulant matrices.

R1 =


2 1 4

4 2 1

1 4 2

 , R2 =


1 4 2

2 1 4

4 2 1

 .

Bilal are chosen S secret circulant matrices.

S1 =


1 2 3

3 1 2

2 3 1

 , S2 =


1 3 5

5 1 3

3 5 1

 .

Ayesha and Bilal compte the matrices va and vb by using these procedures, re-

spectively,as follows.
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Ayesha performs the following steps to compute va matrix.

Va = V1
⊗ R1 ⊗ V2⊗ R2

Va =


3 4 5

5 3 4

4 5 3

⊗


2 1 4

4 2 1

1 4 2


⊗


2 8 4

4 2 8

8 4 2

⊗


1 4 2

2 1 4

4 2 1


mod 23

Va =


3⊗2⊗4⊗4⊗5⊗1 3⊗1⊗4⊗2⊗5⊗4 3⊗4⊗4⊗1⊗5⊗2

5⊗2⊗3⊗4⊗4⊗1 5⊗1⊗3⊗2⊗4⊗4 5⊗4⊗3⊗2⊗4⊗2

4⊗2⊗5⊗4⊗3⊗1 4⊗1⊗5⊗2⊗3⊗4 4⊗4⊗5⊗1⊗3⊗2



⊗


2⊗1⊗8⊗2⊗4⊗4 2⊗4⊗8⊗1⊗4⊗2 2⊗2⊗8⊗4⊗4⊗1

4⊗1⊗2⊗2⊗8⊗4 4⊗4⊗2⊗4⊗8⊗2 4⊗2⊗2⊗1⊗8⊗1

8⊗1⊗4⊗2⊗2⊗4 8⊗4⊗4⊗1⊗2⊗2 8⊗2⊗4⊗4⊗2⊗1

 mod 23

Va =


27 31 26

26 27 31

31 26 27

⊗


34 24 40

40 34 24

24 40 34

 mod 23

Va =


61⊕ 71⊕ 50 51⊕ 65⊕ 66 67⊕ 55⊕ 60

60⊕ 67⊕ 55 50⊕ 61⊕ 71 66⊕ 51⊕ 71

65⊕ 66⊕ 51 55⊕ 60⊕ 67 71⊕ 50⊕ 61

 mod 23

Va =


50 51 55

55 50 51

51 55 50

 =


4 5 9

9 4 5

5 9 4

 mod 23

Bilal perform the following steps to compute vb matrix.

Vb = V1
⊗ S1 ⊗ V2⊗ S2
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Vb =


3 4 5

5 3 4

4 5 3

⊗


1 2 3

3 1 2

2 3 1


⊗


2 8 4

4 2 8

8 4 2

⊗


1 3 5

5 1 3

3 5 1


mod 23

Vb =


3⊗1⊗4⊗3⊗5⊗2 3⊗2⊗4⊗1⊗5⊗3 3⊗3⊗4⊗2⊗5⊗1

5⊗1⊗3⊗3⊗4⊗2 5⊗2⊗3⊗1⊗4⊗3 5⊗3⊗3⊗2⊗4⊗1

4⊗1⊗5⊗3⊗3⊗2 4⊗2⊗5⊗1⊗3⊗3 4⊗3⊗5⊗2⊗3⊗1



⊗


2⊗1⊗8⊗5⊗4⊗3 2⊗3⊗8⊗1⊗4⊗5 2⊗5⊗8⊗3⊗4⊗1

4⊗1⊗2⊗5⊗8⊗3 4⊗3⊗2⊗1⊗8⊗5 4⊗5⊗2⊗3⊗8⊗1

8⊗1⊗4⊗5⊗2⊗3 8⊗3⊗4⊗1⊗2⊗5 8⊗5⊗4⊗3⊗2⊗1

 mod 23

Vb =


3⊗12⊗10 6⊗4⊗15 9⊗8⊗5

5⊗9⊗8 10⊗3⊗12 15⊗6⊗4

4⊗15⊗6 8⊗5⊗9 12⊗10⊗3



⊗


2⊗40⊗12 6⊗8⊗20 10⊗24⊗4

4⊗10⊗24 12⊗2⊗40 20⊗6⊗8

8⊗20⊗6 24⊗4⊗10 40⊗12⊗2

 mod 23

Vb =


25 25 22

22 25 25

25 22 25

⊗


54 34 28

28 54 34

34 28 54

 mod 23

Vb =


79⊕ 53⊕ 56 59⊕ 79⊕ 50 53⊕ 59⊕ 76

76⊕ 53⊕ 59 56⊕ 79⊕ 53 50⊕ 59⊕ 79

79⊕ 50⊕ 59 59⊕ 76⊕ 53 53⊕ 56⊕ 79

 mod 23

Vb =


53 50 53

53 53 50

50 53 53

 =


7 4 7

7 7 4

4 7 7

 mod 23



Key Exchange Protocol Based on MPF and Circulant Matrix 59

Ayesha computes the value of Xa by using Va and initial vector X.

Xa = Va ⊗X

Xa =


4 5 9

9 4 5

5 9 4

⊗


2

3

5

 mod 23

Xa =


(4⊗ 2)⊕ (5⊗ 3)⊕ (9⊗ 5)

(9⊗ 2)⊕ (4⊗ 3)⊕ (5⊗ 5)

(5⊗ 2)⊕ (9⊗ 3)⊕ (4⊗ 5)

 mod 23

Xa =


6⊕ 8⊕ 14

11⊕ 7⊕ 10

7⊕ 12⊕ 9

 =


6

7

7

 mod 23

Bilal calculates the value of Xb by using Vb and initial vector X.

Xb = Vb ⊗X

Xb =


3 0 3

3 3 0

0 3 3

⊗


2

3

5

 mod 23

Xb =


(7⊗ 2)⊕ (4⊗ 3)⊕ (7⊗ 5)

(7⊗ 2)⊕ (7⊗ 3)⊕ (4⊗ 5)

(4⊗ 2)⊕ (7⊗ 3)⊕ (7⊗ 5)

 mod 23

Xb =


9⊕ 7⊕ 7

9⊕ 10⊕ 9

6⊕ 10⊕ 12

 =


7

9

6

 mod 23

Ya = Va ⊗Xb



Key Exchange Protocol Based on MPF and Circulant Matrix 60

Ya =


4 5 9

9 4 5

5 9 4

⊗


7

9

6

 mod 23

Ya =


(4⊗ 7)⊕ (5⊗ 9)⊕ (9⊗ 6)

(9⊗ 7)⊕ (4⊗ 9)⊕ (5⊗ 6)

(5⊗ 7)⊕ (9⊗ 9)⊕ (4⊗ 6)

 mod 23

Ya =


11⊕ 14⊕ 15

16⊕ 13⊕ 11

12⊕ 18⊕ 10

 =


11

11

10

 mod 23

Yb = Vb ⊗Xa

Yb =


7 4 7

7 7 4

4 7 7

⊗


6

7

7

 mod 23

Yb =


(7⊗ 6)⊕ (4⊗ 7)⊕ (7⊗ 7)

(7⊗ 6)⊕ (7⊗ 7)⊕ (4⊗ 7)

(4⊗ 6)⊕ (7⊗ 7)⊕ (7⊗ 7)

 mod 23

Yb =


5⊕ 3⊕ 6

5⊕ 6⊕ 3

2⊕ 6⊕ 6

 =


11

11

10

 mod 23

Ya = Yb

K = Va ⊗Xb = Vb ⊗Xa

This is an example of the modified key exchange protocol based on n circulant

matrices and MPF. The above example shows that the two communicating parties

have shared the same secret key. The hard problems of this scheme are discrete

logarithm problem and the matrix decomposition. Also with symmetrical decom-

position problem (SDP) and matrix decomposition problem (MDP) having a large
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key space it is computationally and practically infeasible to recover the secret keys.

The use of coupled hard problems provides more security then the key exchange

presented in [20].

The advantage of tropical algebra over classical algebra is that it increased ef-

ficiency because tropical addition and multiplication of matrices is significantly

faster than usual addition and multiplication of matrices. The protocol’s complex-

ity is based on a min-plus linear system, whose solution is based on the complexity

classes of NP ∩ co−NP.



Chapter 5

Security Analysis and Conclusion

The chapter presents the security analysis of the proposed key exchange proto-

col, in addition there is a discussion of security analysis of the proposed modified

scheme by using matrix power function and circulant matrices. Then the advan-

tages of tropical scheme over classical scheme are discussed also the conclusion

and future work are provided.

5.1 Security Analysis of Key Exchange Protocol

Key exchange protocol was first developed by NSA which provides mutual authen-

tication for the parties. It became publicly available in 1998 and since then it was

neither attacked nor proved to be secure. The security of key Exchange Protocol

is analyzed and it is found find that the original protocol is susceptible to a class of

attacks. On the positive side, a simple modification of the protocol which makes

Key Exchange Protocol secure is presented.

The verification and key exchange protocols are introduced as models in large se-

cure protocols, the task of maintaining security of the overall protocol in concurrent

environments is not trivial. Using matrix power function and tropical algebra can

increase the security of the modified scheme. Due to large key space and large

matrices, it is difficult to solve decomposition problem which is the underlying
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hard problem of the modified scheme. The security of discussed scheme depends

on the complexity of the solution of matrix power function. Hence the security

of proposed modified scheme is increases computational difficulty or complexity

also with its associated strength the security and accomplishment consideration

are explained in this section.

5.1.1 Discrete Log Problem

The key exchange ptotocol proposed as the modification in the article is very

straightforward and highly depends on discrete log problem, On the other hand,

the calculation for the operation performed on matrices, V1, V2, . . . , Vm is not that

clear. Given the large p and the key length n, it is hard to discover r1, r2, . . . rm

from

Va = (V1
⊗ r1 ⊗ V2⊗ r2 · · · ⊗ Vm⊗ rm) mod p. (5.1)

Then the Equation (5.1) is indeed a system of n2 linear equations in vi unknowns.

In the modification as stated in chapter 4 with different choices for V1, in general

discussion there is n variable in the solution for that system. In this way, the

arrangement gives a group of matrices with basically n entries. In term the running

time of the aforementioned process, for an eight-digit arbitrary prime and n = 20

(with these parameters, the key exchange protocol would have length of at least

540 bits), the aforementioned measure takes the time as low as less than a minute.

5.1.2 Brute Force Attack

The brute-force attack is used to find all possible combinations of private keys.

There is larger arbitrariness and uncertain behavior for smaller key length in the

modified scheme. It is a particular case of ECC, hence the attack is effective on a

shorter length keys. A short length key takes less time, so the brute force attack

works only when using short length keys. Regarding the speed, efficiency and

cryptanalysis matrix power functon approach is better as compared to ECC and

RSA algorithm.
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5.1.3 Advantage of Tropical Scheme over Classical Scheme

The use of tropical algebra gives a lot of advantages and benefits in key exchange

scheme.some of them are descibed as fellows.

• Improved Efficiency

The major benefit of tropical algebra over usual algebra is that it improves effi-

ciency. As tropical multiplication is essentially a usual addition and there is no

usual multiplication, tropical addition and multiplication are much faster than

usual addition and multiplication. It decrease the computational cost of the

scheme as compared to the usual algebra that’s why tropical technique is bet-

ter then the classical techniques.

• Improved Security

As algebraic attacks do not works on min-plus equations so tropical technique

have also improved the security of the modified technique.

5.2 Conclusion

In this thesis, A new platform is applied on the article “A concurrent key ex-

change protocol based on commuting matrices” [20]. In order to increase

the security of the scheme, there is addition of matrix power function on ciculant

matrices by taking the calculation on tropical way. In fact, the attacker has to

solve exponential equations, that is

Va = (V1
⊗ r1 ⊗ V2⊗ r2 · · · ⊗ Vm⊗ rm)

It is hard to find r1, r2, . . . , rm from the knowledge of public parameters. The

Overall security of the scheme is increased by using matrix power function. There

is insertion of security analysis in the given modified scheme. As the future work,
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one can expand the modified scheme by taking the entries of used matrices from

Galois Field.
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